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Abstract— In this paper, a new adaptive control technique
called adaptive fractional-order backstepping is proposed, for a
class of commensurate fractional-order nonlinear systems with
uncertain constant parameters. Using the adaptive fractional-
order backstepping as a basic design tool, we show how to
explicitly construct an adaptive feedback control laws that
solve the Mittag-Leffler stabilization problem of uncertain
commensurate fractional-order nonlinear systems. The global
convergence of the closed-loop systems is guaranteed in the
sense of Mittag-Leffler stability. The efficiency of the proposed
technique is demonstrated in simulation finally.

I. INTRODUCTION

Currently, fractional-order systems have been widely used
in the area of dynamical systems and control. This is mainly
due to that many physical systems are well characterized
by fractional-order differential equations [1]–[3], such as
ultracapacitor, viscoelastic mechanical system and diffusive
system, etc. For more details on this area, one can refer to
the monographs [1]–[4], the papers [5]–[20], [22]–[28] and
the reference therein.

Uncertainties are common phenomena in all dynamical
systems including fractional-order systems. Recently, many
results are devoted to cope with uncertainties in fractional-
order systems. By use of linear matrix inequality (LMI)
technique, several works concentrated on robust stabilization
of uncertain fractional-order systems. The LMI-based robust
stabilization conditions of uncertain fractional-order linear
systems were proposed in [5]–[7] early. For some recent
works, one can refer to [8]–[10] and the references therein.
Besides, H∞ control problems of fractional-order systems
were investigated in [11]–[13] recently. For some noises
that appear in processes or in measurements, [14] proposed
self-tuning control for stochastic fractional-order systems.
However, initially uncertain (or time-varying) parameters
always exist in fractional-order systems. Adaptive control
was famous to deal with them, which has been introduced for
fractional-order systems. By extending the classical model
reference adaptive control (MRAC), fractional-order refer-
ence model or adaptive laws shown in [15]–[18] and the
references therein. Another important method is fractional-
order sliding mode control, which were presented in [19],
[20] and the references therein for uncertain fractional-order
linear or nonlinear systems.
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As we know, adaptive backstepping is a well-known
technique of stabilizing uncertain nonlinear systems with
unknown constant parameters [21]. However, to the authors’
best knowledge, this technique is restricted to the classical
uncertain integer-order nonlinear systems. There few results
on uncertain fractional-order nonlinear systems stabiliza-
tion via adaptive backstepping. Motivated by the mentioned
developments, we devote to solve the Mittag-Leffler sta-
bilization problem of uncertain fractional-order nonlinear
systems via adaptive backstepping. As the resulting adaptive
control laws are with fractional-order forms, we call such
methodology the adaptive fractional-order backstepping.

An attention should be paid to, Mittag-Leffler stability just
describes the pseudo-state trajectories, not the real states of
fractional-order systems, which you can refer to references
[22]–[24] for distinguishing them. So, we call the Lyapunov
function construction for Mittag-Leffler stability as fractional
Lyapunov function, which cannot be seen as energy-like
functions as asserted in [24], [25].

In our contributions, the Mittag-Leffler stabilization prob-
lem of uncertain commensurate fractional-order nonlinear
systems is solved with a guaranteed global convergence
of closed-loop systems. Firstly a general framework of
Lyapunov-like based design is well defined via adaptive
control fractional Lyapunov function (acflf) for fractional-
order systems. Within this framework, adaptive fractional-
order backstepping is proposed by extending the classical
adaptive backstepping for uncertain fractional-order non-
linear systems. The analytic forms of adaptive feedback
control laws are designed via the adaptive fractional-order
backstepping. The proposed technique is verified finally in
an application.

The paper is organized as follows. In Section II, some
definitions and the concept of acflf are introduced. In Section
III, fractional-order backstepping is reviewed firstly. By
extending it, the adaptive fractional-order backstepping is
concluded by stabilizing uncertain fractional-order nonlinear
systems. The analytic forms of adaptive feedback control
laws are derived. The theoretical result is verified in Section
IV. Finally, we conclude the paper in Section V.

II. PRELIMINARIES

The Caputo fractional-order derivative is used.
Definition 2.1: [4] Let f (t) is a real continuously dif-

ferentiable function. The Caputo fractional-order derivative
with order 0 < ν < 1 on t > 0 is defined by

Dν
t f (t) =

1
Γ(n−ν)

∫ t

0

f (n)(τ)
(t − τ)ν−n+1 d τ ,
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where n = ⌈ν⌉,ν > 0, ⌈·⌉ is the ceiling function.
The fractional-order derivative of a constant C is 0. For

simplicity, the symbol Dν is shorted for Dν
t , where t is the

time.
Definition 2.2: [26] A continuous function γ : [0, t) →

[0,∞) is said to be the K-class function if it is strictly
increasing and γ(0) = 0.

Theorem 2.1: [26] Let x(t) = 0 be the equilibrium point
of the fractional-order system Dν x = f (x, t),x ∈ Ω, where Ω
is a neighborhood region of origin. Assume there exists a
Lyapunov function V (t,x(t)) : [0,∞]×R

n → R and K-class
functions γi, i = 1,2,3 satisfying

(i)γ1(‖x‖)≤V (t,x(t))≤ γ2(‖x‖),

(ii)DνV (t,x(t))≤−γ3(‖x‖).

Then the system is asymptotically Mittag-Leffler stable.
Moreover, if Ω = R

n, the system is globally asymptotically
Mittag-Leffler stable.

Remark 2.1: Theorem 2.1 deals with pseudo-states of
fractional-order systems and tells us the sufficient conditions
of Lyapunov functions to make them Mittag-Leffler stable.
Actually, as illustrated in [23]–[25], this kind Lyapunov func-
tions are not accurate energy descriptions for fractional-order
systems, so we call them fractional Lyapunov functions.

To construct fractional Lyapunov functions for fractional-
order systems, the power law for fractional-order derivative
is introduced now.

Lemma 2.1: Let x(t) ∈ R be a real continuously differ-
entiable function. Then for any p = 2n,n ∈ N,Dν xp(t) ≤
px(p−1)(t)Dν x(t), where 0 < ν < 1 is the fractional order.

Proof: A simple case of p = 2 was shown by [28]. For
the proof of this general version one can see [27].

Corollary 2.1: Let x(t) ∈ R be a real continuously dif-
ferentiable function. Then for p = 2, 1

2 Dν x2(t)≤ x(t)Dν x(t),
where 0 < ν < 1 is the fractional order.

Corollary 2.2: Let x(t) = [x1(t), . . . ,xn(t)]T ∈ R
n be a

real continuous and differentiable vector function. Then
Dν [x(t)T Px(t)] ≤ 2x(t)T PDν x(t), where 0 < ν < 1 is the
fractional order and P = diag[p1, . . . , pn]> 0.

It will be demonstrated in Section III that 1
2 x(t)T Px(t) (or

P = I) is always a reasonable fractional Lyapunov function.
Next, the concept of acflf is introduced to test whether an
uncertain fractional-order system is feedback Mittag-Leffler
stabilizable.

Definition 2.3: A smooth function V (t,x(t), θ̃) : [0,∞)×
R

n × R
m is called a acflf for Dν x(t) = f (x,u,θ),x ∈

R
n, f (0,0, ·) = 0 with the adaptive control law u = α(x, θ̂) if

there exist three K-class functions γi, i = 1,2,3, such that

(i)γ1(‖x̄‖)≤V (t,x(t),‖θ̃‖)≤ γ2(‖x̄‖),

(ii)DνV (t,x(t),‖θ̃‖)≤−γ3(‖x̄‖).

where x̄ = [x⊤, θ̂⊤]⊤,θ ∈ R
m is the unknown parameter, the

parameter estimate error is θ̃ = θ − θ̂ and Dν θ̂ = τ(x, θ̂) is
the adaptive law of the parameter estimate.

The symbol ‖ ·‖ represents Euclidean norm in the follow-
ing design, which will not be declared.

When the adaptive parameters appear in fractional Lya-
punov function V , this V is called adaptive control fractional
Lyapunov function (acflf). With the known fractional order ν ,
the aim of adaptive Mittag-Leffler stabilization of uncertain
fractional-order nonlinear systems is to design an adaptive
feedback control law u = α(x, θ̃),Dν θ̂ = τ(x, θ̂) such that
the closed-loop systems is (globally) asymptotically Mittag-
Leffler stable. Actually finding α,τ and V satisfying (i) and
(ii) in Definition 2.3 is a difficult task in most cases.

Remark 2.2: As the resulting controllers from Lemma 2.1
and its corollaries have the same right formula as the clas-
sical forms [21], so they are conservative. These conditions
are sufficient for Mittag-Leffler stabilizability of uncertain
fractional-order nonlinear systems. Besides, it is possible
that there exist other better candidate fractional Lyapunov
functions, which may contradict with Theorem 2.1. However,
they are always valid for some specific fractional-order
nonlinear systems.

III. MAIN RESULTS

A common form of nonlinearities appears multiplied with
physical constants, often poorly known or dependent on
the slowly changing environment. We consider the un-
known constant parameters appear linearly in the fractional-
order models. In presence of such parametric uncertainties,
the adaptive fractional-order backstepping is introduced to
achieve convergence of the closed-loop system.

Before the adaptive fractional-order backstepping, we re-
view fractional-order backstepping in an example. For the
details one can refer to [2], [27].

Example 3.1: Consider a fractional-order nonlinear planar
system

{

Dν x = xξ + xθ
Dν ξ = u

,

where x,ξ ∈ R are the states and u ∈ R is the control input.
θ is the unknown bounded parameter, but we do not know
its bound.

The static feedback controller is considered here via
fractional-order backstepping. Let 1st fractional Lyapunov
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function V = 1
2 x2,z = ξ −α(x), and ξ viewed as the virtual

control, we have

DνV ≤ xDν x = x2[z+α(x)+θ ].

Choose α = −Cx2,C > 0, the fractional-order system
becomes

{

Dν x = xz−Cx3 + xθ
Dν z = u−Dν α(x)

.

Choose the candidate acflf Va(x,ξ ) =V (x)+ 1
2 [ξ −α(x)]2,

we have

DνVa(x,ξ )≤−Cx4 + z[u+ x2 −Dν α(x)]+ x2θ .

If the control is chosen as u = −C1[ξ − α(x)]− x2 +
Dν α(x),C1 > 0, we have

DνVa(x,ξ )≤−Cx4 −C1z2 + x2θ .

where C,C1 > 0 are constants. It is obvious that the global
boundedness can be guaranteed by choosing C > ‖θ‖∞.

In Example 3.1, the static controller can guarantee that in
the presence of uncertain bounded uncertainties the closed-
loop states remain bounded (semi-global stability), the feed-
back gain may increase too large. If the uncertain pa-
rameters in fractional-order nonlinear models are unknown,
the fractional-order backstepping may be invalid. Therefore
adaptive fractional-order backstepping need to be introduced.

We have the following assumption firstly.
Assumption 3.1: Let the uncertain fractional-order nonlin-

ear system
Dν x = f (x)+F(x)θ +g(x)u,

where x ∈ R
n is the pseudo-state, θ ∈ R

m is the unknown
constant parameter and u ∈ R is the control input. There
exists a adaptive feedback control law u = α(x, θ̂) and a K-
class function γ such that

x⊤[ f (x)+F(x)θ̂ +g(x)α(x)]≤−γ(‖x̄‖), (1)

Dν θ̂ = ΓF(x)⊤x, (2)

where x̄ = [x⊤, θ̂⊤]⊤, θ̂ ∈ R is the parameter estimate and
Γ = diag[p1, . . . , pn] > 0 is the gain matrix of the adaptive
law.

Denote θ̃ = θ − θ̂ , let the candidate aclf

Va =
1
2

x⊤x+
1
2

θ̃⊤Γ−1θ̃ .

The sufficiency of (1) and (2) is obvious.
For the scalar system x,θ ∈ R, Assumption 3.1 is always

valid for g(x) 6= 0,x ∈ R. In this case, the adaptive control
u can be set to α(x, θ̂) = − 1

g(x) [ f (x) + F(x)θ̂ +Cx], and

Dν θ̂ = F(x)x. With this adaptive control law, we have

DνVa ≤ −C‖x‖, where C > 0 is a constant. It is obvious
that unless x = 0, we have DνVa < 0. There exists a K-class
function γ such that DνVa ≤−γ(‖x̄‖).

A special attention should be paid to the conservative of
possible control laws, which satisfies (1) and (2), because
the choice of acflf is conservative. However, the efficiency
is obvious for common uncertain fractional-order nonlinear
systems, which will be justified later.

Theorem 3.1: Let the uncertain fractional-order nonlinear
system

{

Dν x = f (x)+F(x)θ +g(x)ξ
Dν ξ = u

,

where x ∈ R
n,ξ ∈ R is the pseudo-states, θ ∈ R

m is an
unknown constant and u ∈R is the control input. Let Dν x =
f (x)+F(x)θ + g(x)ξ satisfies Assumption 3.1 with ξ ∈ R

as its virtual control. If the acflf is taken by

Va(z1,z2, θ̃) =
1
2

z⊤1 z1 +
1
2

z2
2 +

1
2

θ̃⊤Γ−1θ̃ , (3)

where z1 = x,z2 = ξ −α(x, θ̂) and θ̃ = θ − θ̂ is the parameter
estimate error, that is, there exists an adaptive feedback
control u which renders the equilibrium of (z1,z2, θ̃) globally
asymptotically Mittag-Leffler stable. The feedback control
law can be chosen by

u =−x⊤g(x)−C1[ξ −α(x, θ̂)]+Dν α, (4)

Dν θ̂ = ΓF(x)⊤x, (5)

where the adaptive parameter θ̂ is updated by (5), and Γ =
diag[p1, . . . , pn]> 0 is the gain matrix of the adaptive law.

Proof: Two steps in this proof are presented.
Step 1. Let z1 = x and ξ viewed as the virtual control, the

error z2 = ξ −α(x, θ̂), we have

Dν z1 = f (z1)+F(z1)θ +g(z1)[z2 +α(x, θ̂)].

Note θ̃ = θ − θ̂ , the 1st fractional Lyapunov function
V1(z1, θ̃) = 1

2 z1⊤z1 +
1
2 θ̃⊤Γ−1θ̃ . With Assumption 3.1, we

have

DνV1 ≤−γ(‖x̄‖)+ z⊤1 g(z1)z2

+ θ̃⊤[F(z1)
⊤z1 −Γ−1Dν θ̂ ].

We postpone the choice of update law for θ̂ until the next
step.

Step 2. To design the adaptive control u for Dν z2 = u−
Dν α . Consider the aclf (3), we have

DνVa ≤−γ(‖x̄‖)+ θ̃⊤[F(z1)
⊤z1 −Γ−1Dν θ̂ ]

+ z2[z
⊤
1 g(z1)+u−Dν α].
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One control and the adaptive law can be chosen by (4)
and (5) respectively. With Assumption 3.1, we have

DνVa ≤−γ(‖x̄‖)−C1z2
2.

By use of Euclidean norm, there exists a K-class function
γ̄(‖ ¯̄x‖) = γ(‖x̄‖)+C1z2

2,
¯̄x = [x̄⊤,z2]

⊤.
With respect to Theorem 2.1, the acflf holds globally. So

far, the proof is completed.
Now, we reconsider Example 3.1 using the above adaptive

fractional-order backstepping scheme.
Example 3.2: (Continued Example 3.1) At first, let z1 =

x and ξ viewed as the virtual control, the error z2 = ξ −
α(x, θ̂), we have

Dν z1 = z1[z2 +α(x, θ̂)]+ z1θ .

Note θ̃ = θ − θ̂ , let the 1st fractional Lyapunov function
V1(z1, θ̂) = 1

2 z2
1 +

1
2ρ θ̃ 2,ρ > 0. If choose α(x, θ̂) =−C1 − θ̂ ,

we have

DνV1 ≤−C1z2
1 + z2

1z2 + θ̃ [z2
1 −

1
ρ

Dν θ̂ ].

The to design the adaptive control u with the acflf (3), we
have DV

a ≤−C1z2
1 + θ̃ [z2

1 −
1
ρ Dν θ̂ ].

One control and the adaptive law can be chosen by

u =−C2z2 − z2
1 +Dν α,Dν θ̂ = ρz2

1.

Thus, we have DνVa ≤−C1z2
1 −C2z2

2.
According to Theorem 2.1, the closed-loop system is

globally asymptotically stable.
The adaptive fractional-order backstepping is shown in

Theorem 3.1 with respect to a single uncertain parameter.
The following theorem concerns a general form.

Theorem 3.2: Let the parametric strict-feedback form of
uncertain fractional-order nonlinear system



























Dν x1 = x2 +ϕ⊤
1 (x1)θ

Dν x2 = x3 +ϕ⊤
2 (x1,x2)θ

...
Dν xn−1 = xn +ϕ⊤

n−1(x1, . . . ,xn−1)θ
Dν xn = β (x)u+ϕ⊤

n (x)θ

,

where β (x) 6= 0 for all x∈R
n,θ ∈R

m is an unknown constant
and u ∈ R is the control input. If the acflf is taken by

Va(z1, . . . ,zn, θ̂) =
1
2

n

∑
i=1

z2
i +

1
2

θ̃⊤Γ−1θ̃ , (6)

where z1 = x1,zi = xi −αi−1(z1, . . . ,zi−1, θ̂), i = 2, . . . ,n and
θ̃ = θ − θ̂ is the parameter estimate error, that is, there exists
an adaptive feedback control u which renders the closed-
loop system globally asymptotically Mittag-Leffler stable on

Λ, where Λ = {(z1, . . . ,zn, θ̃)|z 6= 0}. And the boundedness
of the closed-loop systems is guaranteed on R

m+n\Λ. The
adaptive feedback control law can be chosen by

u=−
1

β (x)
[Cnzn+zn−1−ϕ⊤

n (x)θ̂ +Dν αn−1(z1, . . . ,zn−1, θ̂)],
(7)

Dν θ̂ = Γ
n−1

∑
i=1

ϕi(x1, . . . ,xi)zi, (8)

where αi−1(z1, . . . ,zi−1, θ̂) = −Ci−1zi−1 − zi−2 −
ϕ⊤

i−1(x1, . . . ,xi−1)θ̂ + Dν αi−2(z1, . . . ,zi−2, θ̂), i =

3, . . . ,n,α1(z1, θ̂) = −C1z1 − ϕ⊤
1 (x1)θ̂ , C1, . . . ,Cn > 0

are constants. The adaptive parameter θ̂ is updated by
(8) and Γ = diag[p1, . . . , pn] > 0 is the gain matrix of the
adaptive law.

Proof: We have the following steps.
Step 1. Let z1 = x and x2 viewed as the virtual control,

the error z2 = x2 −α1(z1, θ̂), we have

Dν z1 = z2 +α1(z1, θ̂)+ϕ⊤
1 (x1)θ .

Note θ̃ = θ − θ̂ , the 1st fractional Lyapunov function
V1(z1, θ̂) = 1

2 z2
1 +

1
2 θ̃Γ−1θ̃ , we have

DνV1 ≤ z1[z2+α1(z1, θ̂)+ϕ⊤
1 (x1)θ̂ ]+ θ̃⊤(ϕ1(x1)z1−Γ−1Dν θ̂)

If choose α1(z1, θ̂) = −C1z1 −ϕ⊤
1 (x1)θ̂ , z2 and θ̃ are to

be governed to zeros. Thus we have

DνV1 ≤−C1z2
1 + z1z2 + θ̃⊤(ϕ1(x1)z1 −Γ−1Dν θ̂).

Step 2. Let the error z3 = x3 −α2(z1,z2, θ̂), we have

Dν z2 = z3 +α2(z1,z2, θ̂)+ϕ⊤
2 (x1,x2)θ −Dν α1(z1, θ̂).

Let 2nd fractional Lyapunov function V2(z1,z2, θ̂) =V1 +
1
2 z2

2, we have

DνV2 ≤−C1z2
1 + z1z2 + θ̃⊤(

2

∑
i=1

ϕi(x1, . . . ,xi)zi −Γ−1Dν θ̂)

+ z2[z3 +α2(z1,z2, θ̂)+ϕ⊤
2 (x1.x2)θ̂ −Dν α1(z1, θ̂)].

If choose α2(z1,z2, θ̂) = −C2z2 − z1 − ϕ⊤
2 (x1,x2)θ̂ +

Dν α1(z1, θ̂), z3 and θ̃ are to be governed to zeros. Thus
we have

DνV2 ≤−
2

∑
i=1

Ciz
2
i +z2z3+ θ̃⊤(

2

∑
i=1

ϕi(x1, . . . ,xi)zi−Γ−1Dν θ̂).

Step 3. Let the error z4 = x4 −α3(z1,z2,z3, θ̂), we have

Dν z3 = z4 +α3(z1,z2,z3, θ̂)+ϕ⊤
3 (x1,x2,x3)θ

−Dν α2(z1,z2, θ̂).
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Let 3rd fractional Lyapunov function V3(z1,z2,z3, θ̂) =
V2 +

1
2 z2

3, we have

DνV3 ≤−
2

∑
i=1

Ciz
2
i + z2z3 + θ̃⊤(

3

∑
i=1

ϕi(x1, . . . ,xi)zi −Γ−1Dν θ̂)

+z3[z4 +α3(z1,z2,z3, θ̂)+ϕ⊤
3 (x1.x2,x3)θ̂ −Dν α2(z1,z2, θ̂)].

If choose α3(z1,z2,z3, θ̂) =−C3z3−z2−ϕ⊤
3 (x1,x2,x3)θ̂ +

Dν α2(z1,z2, θ̂), z4 and θ̃ are to be governed to zeros. Thus
we have

DνV3 ≤−
3

∑
i=1

Ciz
2
i +z3z4+ θ̃⊤(

3

∑
i=1

ϕi(x1, . . . ,xi)zi−Γ−1Dν θ̂).

Step n− 1. Let the error zn = xn −αn−1(z1, . . . ,zn−1, θ̂),
we have

Dν zn−1 = zn +αn−1(z1, . . . ,zn−1, θ̂)+ϕ⊤
n−1(x1, . . . ,xn−1)θ

−Dν αn−2(z1, . . . ,zn−2, θ̂).

Let n − 1-th fractional Lyapunov function
Vn−1(z1, . . . ,zn−1, θ̂) =Vn−1 +

1
2 z2

n−1, we have

DνVn−1 ≤−
n−2

∑
i=1

Ciz
2
i + θ̃⊤(

n−1

∑
i=1

ϕi(x1, . . . ,xi)zi −Γ−1Dν θ̂)

+ zn−1[zn + zn−2 +αn−1(z1, . . . ,zn−1, θ̂)
+ϕ⊤

n−1(x1, . . . ,xn−1)θ̂ −Dν αn−2(z1, . . . ,zn−2, θ̂)].

If choose αn−1(z1, . . . ,zn−1, θ̂) = −Cn−1zn−1 − zn−2 −
ϕ⊤

n−1(x1, . . . ,xn−1)θ̂ +Dν αn−2(z1, . . . ,zn−2, θ̂), zn and θ̃ are
to be governed to zeros. Thus we have

DνVn−1 ≤−
n−1

∑
i=1

Ciz
2
i + zn−1zn

+ θ̃⊤(
n−1

∑
i=1

ϕi(x1, . . . ,xi)zi −Γ−1Dν θ̂).

Step n. The last equation can be transformed into

Dν zn = β (x)u+ϕ⊤
n (x)θ −Dν αn−1(z1, . . . ,zn−1, θ̂).

Let the acflf (6), we have

DνVa ≤−
n−1

∑
i=1

Ciz
2
i + θ̃⊤(

n−1

∑
i=1

ϕi(x1, . . . ,xi)zi −Γ−1Dν θ̂)

+zn[β (x)u+ zn−1 +ϕ⊤
n (x)θ̂ −Dν αn−1(z1, . . . ,zn−1, θ̂)].

One control and the adaptive law can be chosen by (7)
and (8) respectively. Thus we have

DνVa ≤−
n

∑
i=1

Ciz
2
i .

Consider two cases (i) and (ii):

(i) when z 6= 0, we know DνVa < 0. There exists a K-class
function γ1 such that DνVa ≤−γ1(‖z̄‖), z̄ = [z1, . . . ,zn, θ̃⊤]⊤.

(ii) when z = 0, we know DνVa ≤ 0. According to the
fractional comparison principle [26], we know that

DνVa ≤ DνC =⇒Va ≤C,

where C =Va(t = 0) is a positive constant.
With respect to Theorem 2.1, for the case (i), the closed-

loop system is asymptotically Mittag-Leffler stable on the
region Λ. Furthermore, on R

m+n\Λ, when Va(t = 0) = 0, the
parameter estimates are asymptotically Mittag-Leffler stable;
otherwise, they are bounded.

Therefore, the acflf (6) holds on Λ. So far, this proof is
completed.

Theorems 3.1 and 3.2 show how to cope with unknown
parameters via fractional-order backstepping, which may
result in adaptive fractional-order feedback control laws.

IV. NUMERICAL SIMULATION

The usefulness of the proposed method is validated in
this section. The gyroscope is a widely used dynamical
system and its fractional-order nonlinear model attracts a
recent attention [19]. The Grünwald-Letnikov difference [4]
is used to simulate the fractional-order nonlinear systems. In
the simulation, we abandon the short memory principle for
improving numerical accuracy. The time step is h = 0.0001.

Example 4.1: The fractional-order gyroscope with control
u can be represented by

{

Dν x1 = x2

Dν x2 =−p(t)x1 − c1x2 − c2x3
2 +q(t)x3

1 +u

where p(t)= α2

4 − f sin(ωt),q(t)= α2

12 −
β
6 −

f sin(ωt)
6 ,α2 =

100,β = 1,ω = 25, f = 35.5,ν = 0.7 and c1,c2 are viewed
as unknown constants.

Let z1 = x1, view x2 as the virtual control and z2 = x2−α1,
we have Dν z1 = z2+α1(z1, ĉ1, ĉ2). Denote c̃1 = c1− ĉ1, c̃2 =
c2 − ĉ2. Let the 1st fractional Lyapunov function V1 =

1
2 z2

1 +
1
2γ c̃1

2 + 1
2ρ c̃2

2.
If choose α1(z1, ĉ1, ĉ2) =−K1x1,K1 > 0, we have

DνV1 ≤−K1z2
1 + z1z2 −

1
γ

c̃1Dν ĉ1 −
1
ρ

c̃2Dν ĉ2.

Step 2. With Dν z2 =−p(t)x1 − c1x2 − c2x3
2 +q(t)x3

1 +u−
Dν α1, let the candidate acflf V2 =V1 +

1
2 z2

2.
The adaptive control law can be chosen by

u = (−K1K2 + p(t)−1)x1 +(−K2 + ĉ1 −K1)x2 + ĉ2x3
2

−q(t)x3
1,K2 > 0,

Dν ĉ1 =−γx2z2,D
ν ĉ2 = ρx3

2z2.

6924

Authorized licensed use limited to: University of Southern California. Downloaded on February 06,2022 at 22:10:30 UTC from IEEE Xplore.  Restrictions apply. 



Hence, we have DνV2 ≤−K1z2
1 −K2z2

2.
In the simulation, K1 = 2,K2 = 3,ρ = γ = 1. The initial

state is (2,−2) and the initial parameter estimate (0,0). The
unknown parameters are set to c1 = 0.5,c2 = 0.05. The state
trajectories of the controlled system are shown in Fig. 1.
By applying the control input, the system converges to the
equilibrium quickly. The control input is shown in Fig. 2.
The parameter estimates are shown in Fig. 3. It is verified
that the adaptive fractional-order backstepping is feasible for
real fractional-order systems.
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Fig. 1. The states
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Fig. 2. The control input

V. CONCLUSIONS AND FUTURE WORKS

This paper concerns the Mittag-Leffler stabilization prob-
lem. A general framework of Lyapunov-like based design
is defined via adaptive control fractional Lyapunov function.

0 1 2 3 4 5

x 10
−3

−2

0

2

4

6

8

10

12
x 10

−3

Time (seconds)

 

 

c1
c2

Fig. 3. The parameter estimates

Within this framework, the adaptive fractional-order back-
stepping technique is proposed. The analytic forms of adap-
tive feedback control laws are designed via this technique.
The proposed development is verified finally.

There are many promising directions for future works.
Uncertain fractional-order nonlinear systems need to be
investigated further with unmatched disturbances. Some ap-
plications are still meaningful to the success of fractional-
order backstepping technique. Furthermore, the relationship
between Lyapunov function and fractional Lyapunov func-
tion should be bridged.
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